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1. INTRODUCTION

Flow and dispersion processes in urban areas
are profoundly influenced by the presence of build-
ings which divert mean flow, affect surface heating
and cooling, and alter the structure of turbulence in
the lower atmosphere. Accurate prediction of veloc-
ity, temperature, and turbulent kinetic energy fields
are necessary for determining the transport and dis-
persion of scalars. Correct predictions of scalar
concentrations are vital in densely populated urban
areas where they are used to aid in emergency
response planning for accidental or intentional re-
leases of hazardous substances.

Traditionally, urban flow simulations have been
performed by computational fluid dynamics (CFD)
codes which can accommodate the geometric com-
plexity inherent to urban landscapes. In these types
of models the grid is aligned with the solid bound-
aries, and the boundary conditions are applied to
the computational nodes coincident with the sur-
face. If the CFD code uses a structured curvilin-
ear mesh, then time-consuming manual manipula-
tion is needed to ensure that the mesh conforms
to the solid boundaries while minimizing skewness.
If the CFD code uses an unstructured grid, then
the solver cannot be optimized for the underlying
data structure which takes an irregular form. Un-
structured solvers are therefore often slower and
more memory intensive than their structured coun-
terparts. Additionally, urban-scale CFD models
are often forced at lateral boundaries with ideal-
ized flow, neglecting dynamic forcing due to syn-
optic scale weather patterns. These CFD codes
solve the incompressible Navier-Stokes equations
and include limited options for representing atmo-
spheric processes such as surface fluxes and mois-
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ture. Traditional CFD codes therefore posses sev-
eral drawbacks, due to the expense of either cre-
ating the grid or solving the resulting algebraic sys-
tem of equations, and due to the idealized boundary
conditions and the lack of full atmospheric physics.

Meso-scale atmospheric boundary layer simula-
tions, on the other hand, are performed by numer-
ical weather prediction (NWP) codes, which can-
not handle the geometry of the urban landscape,
but do provide a more complete representation of
atmospheric physics. NWP codes typically use
structured grids with terrain-following vertical coor-
dinates, include a full suite of atmospheric physics
parameterizations, and allow for dynamic synoptic
scale lateral forcing through grid nesting. Terrain-
following grids are unsuitable for urban terrain, as
steep terrain gradients cause extreme distortion of
the computational cells.

In this work, we introduce and develop an im-
mersed boundary method (IBM) to allow the favor-
able properties of a numerical weather prediction
code to be combined with the ability to handle com-
plex terrain. IBM uses a non-conforming structured
grid, and allows solid boundaries to pass through
the computational cells. As the terrain passes
through the mesh in an arbitrary manner, the main
goal of the IBM is to apply the boundary condition
on the interior of the domain as accurately as pos-
sible. With the implementation of the IBM, numer-
ical weather prediction codes can be used to ex-
plicitly resolve urban terrain. Heterogeneous urban
domains using the IBM can be nested into larger
mesoscale domains using a terrain-following coor-
dinate. The larger mesoscale domain provides lat-
eral boundary conditions to the urban domain with
the correct forcing, allowing seamless integration
between mesoscale and urban scale models. Fur-
ther discussion of the scope of this project is given
by Lundquist et al. [2007].

The current paper describes the implementation
of an IBM into the Weather Research and Fore-

7th Symposium on the Urban Environment, American Meteorological Society,
September 10-13, 2007, San Diego, CA



casting (WRF) model, which is an open source
numerical weather prediction code. The WRF
model solves the non-hydrostatic compressible
Navier-Stokes equations, and employs an isobaric
terrain-following vertical coordinate. Many types of
IB methods have been developed by researchers;
a comprehensive review can be found in Mittal
and Iaccarino [2005]. To the authors’ knowledge,
this is the first IBM approach that is able to use
a pressure-based coordinate. The immersed
boundary method presented here uses direct
forcing, first suggested by Mohd-Yusof [1997], to
impose a no-slip boundary condition. Additionally,
the WRF model has been modified to include a
no-slip bottom boundary condition enabling direct
comparisons with the IBM solution for problems
with gently sloping terrain. The accuracy and
efficiency of the immersed boundary solver is
examined within the context of a two-dimensional
Witch of Agnesi hill. Results are also presented for
two-dimensional flow over several blocks of New
York City, which demonstrate the IB method’s ability
to handle extremely complex terrain with sharp
corners and steep terrain gradients.

2. NUMERICAL METHODOLOGY

The solver for the WRF model is described in
this section. Details are included for the governing
equations, spatial and temporal discretiztion, and
boundary conditions. Following this, details are
given about the changes required to add the
additional option of a no-slip bottom boundary
condition to WRF. Finally, the modifications needed
to include the effects of the immersed boundary
are discussed.

2.1 THE WEATHER RESEARCH AND FORE-
CASTING MODEL

WRF is an open source community model that is
designed for a variety of purposes ranging from op-
erational weather forecasting to idealized geophysi-
cal flow simulations. The software is designed to be
flexible and modular, which facilitates development
of the code by the broad academic community. Cur-
rently there are two dynamics solvers that will op-
erate within the WRF framework. The core known
as Advanced Research WRF (ARW) was used for
these simulations, and is the focus of the following
discussion. ARW has primarily developed by the
National Center for Atmospheric Research (NCAR),
and as of 2007, they continue to develop, maintain,
and distribute the code.

ARW is a conservative finite-difference model
that solves the non-hydrostatic compressible
Navier-Stokes equations given by equations (1).

∂t
~V + ~V · ∇~V + α∇p + ~g = ~F (1a)

∂tρ +∇ · (ρ~V ) = 0 (1b)

Here α is the specific volume, and ~F includes Cori-
olis effects and any additional forcing terms such
as turbulent mixing or model physics. Additionally,
WRF uses a terrain-following hydrostatic pressure
coordinate allowing pressure to replace height as
an independent variable. Laprise [1992] developed
a transformation of the fully-compressible non-
hydrostatic Euler equations into a terrain-following
isobaric coordinate, forming the foundation of the
governing equations found in WRF.

The vertical pressure or mass coordinate η is
given in terms of the dry hydrostatic pressure Phs,
and defined such that it is zero at the top of the
model, and unity at the surface of the terrain. The
mass of the fluid in the column per unit area is then
denoted by µ. This yields the coordinate defini-
tion η = Phs−Phs top

µ , where µ(x, y) = Phs surface −
Phs top. Once the transformation to this coordinate
system is applied, the strong conservation form of
the Navier-Stokes equations takes the form given in
(2). For reference, these equations are also given
in the NCAR technical note on WRF [Skamarock
et al., 2005, Section 2.2], where the notation differs
slightly.

∂tµ +∇ · (µ~V ) + ∂η(µη̇) = 0 (2a)

∂t(µ~V ) +∇ · (µ~V ; ~V ) + ∂η(µη̇~V )

−∇(p∂ηφ) + ∂η(p∇φ) = ~F
(2b)

∂t(µw) +∇ · (µ~V w) + ∂η(µη̇w)
−g (∂ηp− µ) = F

(2c)

In the set of equations (2) the velocity vector ~V
includes the horizontal velocities, and Del operates
in the horizontal dimensions. The variable φ is the
geopotential, and is defined as φ = gz. Addition-
ally the dot notation in η̇ denotes differentiation with
respect to time, and the semicolon notation repre-
sents the dyadic product.

In addition to the conservation of mass and mo-
mentum, an equation for potential temperature is
solved. Potential temperature θ is a conserved
quantity when the atmosphere is assumed to be
adiabatic, so the governing equation takes the form
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used for a conserved scalar:

∂t(µθ) +∇ · (µ~V θ) + ∂η(µη̇θ) = Fθ (3)

Pressure is then diagnosed from the equation of
state below, where γdry is the ratio of heat capaci-
ties of dry air Cp/Cv, po is the surface pressure, and
Rdry is the universal gas constant:

p = po

(
Rdryθ

poαdry

)γdry

(4)

Before the discrete solver is constructed, the gov-
erning equations are recast in perturbation form
for a viscous and moist atmosphere. Perturbation
variables are advantageous for reducing truncation
errors. A complete derivation beginning with the
differential form of the compressible Navier-Stokes
equations and ending with the perturbation form
solved in WRF can be found in Lundquist [2006].

WRF is spatially discretized using an Arakawa-
C staggered grid. Uniform grid spacing is used in
the horizontal directions, and the terrain-following
grid may be stretched in the vertical direction. A
time split integration scheme is used to deal with the
full range of frequencies admitted by the compress-
ible Navier-Stokes equations. In this scheme a third
order explicit Runge-Kutta method is used for time
advancement of meterologically significant low fre-
quency physical modes, while a smaller time step is
needed to account for the higher frequency modes
such as acoustic waves. Horizontally propagat-
ing acoustic modes are integrated using an explicit
forward-backward scheme, and vertically propagat-
ing acoustic modes and buoyancy oscillations are
treated implicitly.

Several options for lateral boundary conditions
are available for use in WRF. These are detailed in
Skamarock et al. [2005] and include periodic, open
or radiative, symmetric, and specified. The first
three boundary conditions are often used in ideal-
ized cases, whereas the specified boundary condi-
tions are common in cases with real external data.

In the vertical direction, the top boundary condi-
tion is specified to be isobaric, and the Cartesian
vertical velocity w is set to zero. Additionally, gravity
waves can be absorbed with a diffusive or Rayleigh
damping layer. At the bottom boundary the con-
travariant coordinate velocity is set to zero, and a
kinematic boundary condition is used for the Carte-
sian vertical velocity. The set of equations given
by (5a) and (5b) create a free slip bottom boundary
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Figure 1: The Arakawa C staggered grid used in
WRF.

condition.

η̇surf = 0 (5a)

wsurf = ~V · ∇h (5b)

In equation (5b) h is a function specifying the terrain
height. The horizontal velocities are extrapolated to
the surface using a quadratic Lagrange polynomial.
The shear stress at the boundary is implicitly set
to zero, unless the effects of friction are taken into
account by specifying a user determined coefficient
of drag.

2.2 DEVELOPMENT OF THE NO-SLIP BOUND-
ARY CONDITION

As part of this work, a no-slip bottom bound-
ary condition has been added to WRF as an ad-
ditional option beyond the standard boundary con-
ditions available in the code. To add the no-slip op-
tion, several modifications were made to the original
WRF boundary conditions, which are given in the
previous section as (5). The first equation (5a) is
still appropriate, as it sets the contravariant veloc-
ity of the bottom coordinate to zero. This ensures
that the bottom coordinate follows the terrain, and
does not change position in time. The kinematic
boundary condition given by (5b) is no longer valid,
and is replaced with the requirement that the Carte-
sian vertical velocity w = 0 on the boundary. The
need to extrapolate the horizontal velocities to the
surface is eliminated, therefore no approximations
are made in our formulation of the no-slip boundary
condition. With these changes, the no-slip bound-
ary condition is satisfied for the advective fluxes in
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the continuity and momentum equations. The use
of an Arakawa C staggered grid (illustrated in Figure
1) eliminates the need to explicitly set the u and v
velocities equal to zero on the surface. In the case
of the vertical derivative in the horizontal momen-
tum equations (the third term in equation (2b)) it
can be seen that because η̇ and ~V are both zero
at the surface, a one-sided vertical difference is suf-
ficient for accurately calculating this term at the bot-
tom boundary of the domain.

If turbulent mixing is included in the model, then
additional boundary conditions must be imposed
on the diffusive flux terms in the momentum equa-
tion in order to achieve a no-slip condition. The
WRF model includes options for calculating the dif-
fusive terms within the framework of the terrain-
following coordinate or in physical space. The phys-
ical space option is compatible with all of the tur-
bulence parameterizations, whereas limited options
for turbulence modeling are available within the co-
ordinate metric framework. For this reason, the no-
slip boundary condition has been implemented in
the physical space formulation.

WRF employs eddy viscosity type turbulence
models so that the turbulent mixing terms take the
form given by (6), and the stress tensor is (7).

Fi = −∂τij

∂xj
+

∂

∂z
(∇z · τij) (6)

τij = −µνtDij (7)

In the diffusive flux equation the second term arises
as the Jacobian of the coordinate transformation,
and z is the physical height of the coordinate so that
∇z = ∇φ/g. Again, the Del operates in the horizon-
tal dimensions only. The variable µ is the column
mass per unit area, νt is the turbulent eddy viscos-
ity, and Dij is twice the strain rate or deformation
tensor and is defined as

Dij =
∂ui

∂xj
+

∂uj

∂xi
− (∇z)j

∂ui

∂z
− (∇z)i

∂uj

∂z
(8)

The locations of the components of the deformation
and stress tensors are shown in Figure 1. Diagonal
elements of each tensor are located at the cell cen-
ter, and off-diagonal elements are located at vortic-
ity points which are centered on the cell edges.

To include the effects of the no-slip bottom
boundary, the calculation of the deformation tensor
is modified. The presence of the Jacobian terms
complicates the implementation of the no-slip
boundary condition by adding partial derivatives
in the vertical direction to each term. The native

WRF boundary condition (which is free slip) uses
a quadratic Lagrange polynomial to estimate the u
and v velocity at the surface for the purpose of cal-
culating D11, D22, and D12. This step is eliminated
for the no-slip boundary condition, and a value of
zero is used for u and v on the surface. In the
native WRF boundary condition D13 and D23 are
zero because they are located on the surface. For
the no-slip boundary condition, the surface values
are calculated using a one sided difference. These
new values of the deformation tensor are used
for calculating the turbulent stresses. Finally, the
equation for the diffusion terms includes additional
terms arising from the Jacobian of the coordinate
transformation. With a free slip boundary condition
τij takes a value of zero on the surface. To satisfy
the no-slip boundary condition, certain elements of
τij must now be calculated at various locations on
the surface, such as below the cell center, below u
points, etc. The calculation of these additional sur-
face stress terms is consistent with the procedure
previously described for evaluating deformation
at the surface, and the methods employed are
one-sided differences, setting velocities to zero
at the surface, and averaging surface values to
intermediate locations.

2.3 FORCING AND RECONSTRUCTION AT THE
IMMERSED BOUNDARY

Immersed boundary method functionality has
been added to the Weather Research and Fore-
casting model through modification to the source
code and the addition of a FORTRAN module. IBM
is a technique used to represent the effects of solid
boundaries on a non-conforming structured grid.
The effects of the external forcing of the fluid by
the boundaries are represented by the addition of a
body force term FB in the equation for the conser-
vation of momentum. The forcing term takes a non-
zero value at computational nodes in the vicinity
of the immersed boundary, but has no effect away
from the boundaries.

∂t
~V + ~V · ∇~V = −α∇p + ν∇2~V + ~g + ~FB (9)

Treatment of the forcing term has varied among
researchers since IBM was introduced by Peskin in
1972. The method used in this work falls into a cate-
gory commonly referred to as discrete or direct forc-
ing which first appeared in Mohd-Yusof [1997], and
was subsequently used by Fadlun et al. [2000], Iac-
carino and Verzicco [2003], and others. Direct forc-
ing is especially adept at handling rigid boundaries,
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and produces a sharp representation of the fluid-
solid interface. This property is desirable for vis-
cous high Reynolds number flows where accurately
resolving boundary layers is extremely challenging.
In direct forcing, the forcing term takes the value
given by (10), however, it is not explicitly calculated.
Instead, the desired Dirichlet boundary condition ~v
is directly imposed on the boundary. ~V n is the ve-
locity of the node where forcing will be imposed.

~FB =
~v − ~V n

∆t
+ ~V · ∇~V + α∇p− ν∇2~V − ~g (10)

In the case that the boundary is coincident with
computational nodes, it is clear that the Dirichlet
boundary condition can be imposed by assigning
the value of ~v to the node. However when the
boundary passes through the grid in an arbitrary
manner, the discrete grid points are not generally
aligned with the boundary. In particular this is the
case on staggered grids, like the one used in WRF.
An interpolation method must be used to determine
the forcing needed at actual computational nodes;
this procedure is often called boundary reconstruc-
tion.

The first step in boundary reconstruction is to
specify the terrain independently of the grid. For
the implementation into the WRF model we have al-
lowed specification of terrain height at twice the res-
olution of the grid, as illustrated in Figure 2. Speci-
fying the terrain elevation in the x − y plane is con-
sistent with raw urban lidar data. Lidar data is often
processed in an effort to extract three-dimensional
features like vertical walls and 90-degree angles
from the raw two-dimensional elevation data, creat-
ing a shape file. Future efforts are planned to allow
the immersed boundary to be represented by either
type of data.

The next step is the determination of cells that
are cut by the immersed boundary. With a stag-
gered grid, cut cells must be determined for each
flow variable that will have a boundary condition
imposed. Each node for each variable (u, v, w) is
marked as interior (solid nodes) or exterior (fluid
nodes) to the terrain to define the cut cells. Flow
variables such as velocity can be reconstructed at
fluid nodes as in Fadlun et al. [2000], or at solid
nodes as in Mohd-Yusof [1997]. In this work the
velocity is reconstructed at solid nodes. This recon-
struction technique is called a ghost cell method,
and has been used for incompressible flows by Ma-
jumdar et al. [2001], Tseng and Ferziger [2003], and
others. Ghost points (depicted in Figure 3) are iden-
tified as the layer of nodes belonging to cut cells that

are within the interior or solid region of the domain.
Now the value of the variable at the ghost cell

which will enforce the Dirichlet boundary condition
must be computed. Several different interpolation
methods have been employed by researchers for
the purpose of making this calculation, ranging from
linear interpolation to inverse distance weighting
schemes [Iaccarino and Verzicco, 2003]. For the
compressible flow equations used in WRF, we have
developed a unique bilinear reconstruction scheme
for two-dimensional terrain. This method is similar
to the linear interpolation scheme used by Tseng
and Ferziger [2003], but has additional favorable
properties. Tseng and Ferziger used the location
of the boundary point and the two nearest compu-
tational nodes to the ghost point for determining the
weighting coefficients used in calculating the value
at the ghost point. Large extrapolation coefficients
result when the nearest neighbors are close to the
boundary point and the ghost point is relatively far
away. Our method eliminates the large weighting
coefficients, which cause the IBM to assign unphys-
ical velocity values to the ghost points, often leading
to numerical instabilities.

The bilinear interpolation method used in this
work is illustrated in Figure 3, and the equation for
a generic variable φ is given by (11).

φ = c1 + c2x + c3z + c4xz (11)

First, the location of the ghost point is reflected
across the boundary in the surface normal direc-
tion, and this is labeled an image point. The (x, z)
location of the image point is used in equation (11).
When a no-slip boundary condition is used, the
ghost point and image point will be equal in magni-
tude with opposite signs φG = −φI . The weighting
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Figure 2: Terrain heights are specified at each the
marked locations marked by a dot. The terrain data
may have up to twice the resolution of the compu-
tational grid.
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Figure 3: Illustration of the boundary reconstruc-
tion method developed for use in WRF. Black ghost
points and red image points are labeled with a ’G’
and ’I’ respectively. Open magenta circles repre-
sent boundary points, and closed blue circles are
the nearest neighbors of the image point. The inter-
polation region bounded by the neighbors is shaded
in grey.

coefficients ~c are determined by solving the system
of equations (12) for each ghost point.

~c = V−1~φ (12)

The Vandermonde matrix (13), contains the physi-
cal location of four neighboring points.

V =


1 x1 z1 x1z1

1 x2 z2 x2z2

1 x3 z3 x3z3

1 x4 z4 x4z4

 (13)

The nearest neighbors for (13) are now chosen as
those nodes or boundary points that are nearest
to the image point (unlike previous methods which
choose neighbors closest to the ghost point). This
is advantageous because the image point lies within
the interpolation region bounded by the neighbors,
and a realistic and physical velocity value will result
from the interpolation. The velocity values at the
neighbors make up the vector ~φ.

The neighbors can be chosen as computational
nodes or as boundary points. Examples of the
choices made are shown in Figure 3, but this il-
lustration is not exhaustive. It can be seen that if
all four nodes surrounding the image point belong
to the fluid domain, then these are chosen as the
neighboring points. The variable values calculated
by the solver enter the vector ~φ. If one of the com-
putational nodes lies within the solid domain, then
the boundary point in the surface normal direction is

used instead. The value of this point is known from
the Dirichlet boundary condition. If two neighbor-
ing computational nodes are solid points, then two
boundary points are chosen instead. Solid nodes
are never used in the interpolation scheme. As
a last step, the variable value calculated from this
scheme is assigned to the ghost node.

It should be noted that the hydrostatic pressure
coordinate in WRF is not time invariant. Therefore,
this procedure, starting with the determination of
fluid and solid nodes and ending with imposing
the boundary condition by assigning values at the
ghost point, must be repeated for each iteration of
the solver. The computational penalty for repeating
these steps has not been prohibitive, however,
the authors are investigating ways to improve effi-
ciency. The simulations presented in Section 3 are
a direct comparison between WRF with the no-slip
boundary conditions, and WRF with the immersed
boundary method. On average, the simulations
using IBM required 30% more computational time
when compared to the non-IBM solution. The
advantage of IBM, as demonstrated in Section
4, is that it can handle highly complex terrain. A
quantitative comparison of resources could not be
made for the cases where WRF is unable to handle
the terrain with its original terrain-following grid.
Additionally, although the WRF grid is structured, it
is not Cartesian. We found that special care must
be exercised in determining the interpolation neigh-
bors by accounting for the horizontal gradients in
the vertical coordinate.

3. WITCH OF AGNESI HILL SIMULATIONS

The performance of the IBM method is exam-
ined in this section by considering flow over a two-
dimensional hill defined by the Witch of Agnesi
curve. This case is chosen because a direct com-
parison can be made between WRF with the no-
slip modifications detailed in Section 2.2 and using
the IBM method described in Section 2.3. Previous
simulations have demonstrated that our IBM imple-
mentation is able to reproduce results compared
with the original WRF coordinate system for turbu-
lent flow over flat terrain in three dimensions using
a variety of surface boundary conditions [Lundquist,
2006]. This previous work includes simulations with
no-slip boundary conditions along with two IBM im-
plementations that use approximate boundary con-
ditions based on the log-law. These are referred to
as log-law velocity reconstruction [Senocak et al.,
2004] and shear stress reconstruction [Lundquist,
2006]. Future work will extend the results with com-
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Figure 4: Profiles of u and w velocity [m/s] are
shown for start up flow over a hill at 72 hours. The
blue dashed line is the IBM solution, and the red
dash-dot line is the no-slip WRF solution.

plex terrain presented here to three dimensions,
and will include the ability to use a wall model pa-
rameterization.

The test flow case is startup flow over a two-
dimensional hill. The hill is defined by the Witch
of Agnesi curve using a height and mountain half-
width of 100m each. The flow is initialized with a
neutral and quiescent sounding, and driven with a
constant pressure gradient in the x direction. The
number of grid points used in each direction is
(nx, ny, nz) = (120, 3, 172) for a total domain size
of (X, Y, Z) = (595m, 10m, 600m). In the horizon-
tal dimensions a constant 5m grid spacing is used.
In the vertical direction the grid is not stretched in
η, however, the pressure coordinate naturally re-
sults in stretching in physical space. In the case
with terrain-following coordinates, the vertical grid
spacing is ∆zmin ≈ 2.85m and ∆zmax ≈ 3.52m at
the initialization time. In the IBM domain the verti-
cal grid spans the entire 600m domain height, giv-
ing a more uniform (and slightly coarser) grid res-
olution, with ∆zmin ≈ 3.42m and ∆zmax ≈ 3.6m.
A constant eddy viscosity is used in the turbulent

diffusion terms. For more sophisticated turbulence
models (such as those solving a turbulent kinetic
energy equation), boundary conditions are needed
for the turbulent scalars. Using a constant eddy vis-
cosity allows us to verify our IBM implementation in-
dependently of the turbulence model. Future plans
include the extension of the IBM method to include
the treatment of turbulent scalars.

Periodic boundary conditions are used at the
lateral boundaries. The no-slip boundary condi-
tion at the bottom of the domain is achieved ei-
ther through the no-slip modifications in the terrain-
following WRF, or with IBM; both methods were
previously described in Section 2. At the top of
the domain, the native WRF boundary condition is
used (isobaric and zero vertical velocity). A diffu-
sive damping layer with a thickness of 50m is used
at the top of the domain to prevent wave reflection
off of the top boundary.

Results are shown for the hill case after 72 hours
of simulation. Figure 4 shows u and w velocity
profiles at several locations across the domain.
It can be seen that the IBM solution matches
the no-slip WRF solution almost exactly. At this
instance in time, the maximum u velocity at the top
of the domain is 8.9296m/s in the IBM solution and
8.9294m/s in the no-slip WRF solution. Given the
different vertical grid spacing in the two simulations,
the excellent agreement is remarkable. Contours of
the same data are shown in Figures 5 and 6. The
u velocity increases as it crests the hill, and areas
of weak recirculation are observed in the troughs.
The profiles of u and w show that separation
occurs on the front of the hill between 200 and
250m (due to the periodic boundary conditions),
and again on the lee of the hill between 300 and
350m. The figures also illustrate the behavior of
the flow in the interior, or solid, portion of the IBM
domain. A weak recirculation is generated in the
opposite sense to the flow above the hill. While the
flow beneath the hill is of no practical interest in
this case, it is interesting to note the features that
develop and useful to verify that the boundary con-
ditions on hill surface are indeed being set correctly.
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Figure 5: Contours of u and w velocity [m/s] are
shown for no-slip WRF for start up flow over a hill at
72 hours.

Figure 6: Contours of u and w velocity [m/s] are
shown for IBM-WRF for start up flow over a hill at
72 hours.
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4. TWO-DIMENSIONAL URBAN TERRAIN SIMU-
LATIONS

The IBM allows resolution of urban terrain, en-
abling WRF to simulate flows which cannot be com-
puted using a standard terrain-following coordinate.
To demonstrate this capability, we have modeled
flow over a two-dimensional slice of downtown New
York City. The terrain is featured in Figure 7, and the
tallest building that is included has a height of 248m.
The domain size is (X, Y, Z) = (698m, 4m, 600m)
with ∆x = 2m, ∆y = 2m, and ∆z ≈ 2.4m.
The total number of grid points in each direction is
(nx, ny, nz) = (350, 3, 250). At initialization the fluid
is at rest, and the flow is driven by a constant hor-
izontal pressure gradient. Boundary conditions are
identical to those described in Section 3.

Figure 7 shows flow streamlines and the velocity
magnitude at three different snapshots in time.
After 20 minutes of flow spin up, recirculation
regions form behind several of the buildings. By 6
hours there is a large area of recirculation between
the buildings, and the flow velocities are fairly weak
in these regions. Although not shown in the figure,
the peak velocity in the domain at 6 hours is 3.9m/s
at a height of 600m.

5. CONCLUSIONS

This work has demonstrated that the immersed
boundary method is a viable option in NWP, and
specifically WRF, for removing the barriers to
modeling complex geometries created by the use
of terrain-following coordinates. A new IBM suitable
for viscous compressible flows has been developed
and implemented in WRF. The IBM features a
boundary reconstruction method that utilizes the
concept of image points. By choosing the nearest
neighbors to the image points, we have alleviated
the problems associated with large weighting
coefficients which have been noted in previous
IBM implementations. A no-slip bottom boundary
condition has also been added to WRF as an
additional option with terrain-following coordinates.
For flow over a two-dimensional hill, the velocity
profiles using IBM show excellent agreement with
the solution calculated on a terrain-following grid.
Finally, applicability to realistic, highly-complex
urban flows was demonstrated by modeling flow
over buildings in New York City. Future work will
extend these results to three dimensions, ultimately
allowing for seamless grid nesting from the meso-
scale to the urban scale.

Figure 7: Velocity contours (m/s) and streamlines
of startup flow over two-dimensional building data
from NYC using IBM-WRF. (a) Time = 20 min (b)
Time = 3hrs 20min (c) Time = 6hrs
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